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ABSTRACT 

We consider the problem of inverting elastic 
light scattering (ELS) measurements from polymeric 
emulsions, to obtain its particle size distribution 
(PSD) and its refractive index. The mathematical 
formulation results in a nonlinear inverse problem. 
A Fredholm integral equation of the first kind 
appears with an unknown parameter in its kernel.  

We discuss the existence, uniqueness and 
stability of the generalized solutions that can be 
obtained when the problem is stated as a 
minimization problem with a least square functional.  

First, we assume that the distribution is known, 
and for this case we prove that the solution exists 
and is unique as long as the relation between the 
measurements and the parameter is by an injective 
function. Then, we use this result to state sufficient 
conditions for the complete problem. The analysis of 
existence and uniqueness of the solution for the 
problem in hand is supported by numerical 
simulation.  

The Phillips-Tikhonov regularization form is 
proposed to stabilize the problem when noisy-data is 
available.  

 
NOMENCLATURE  
a  particle ratio 
D particle diameter 
f particle size distribution (PSD) 
g noisy ELS measurement 
I light scattering intensity 
J functional 
L smoothing restriction on f 
m relative particle refractive index 
np particle refractive index 
ns solvent refractive index 
S  Lorentz-Mie scattering function 
T Operator that represents the integral 

equation 
 

Greek Letteres 
ε experimental error 
γ regularization parameter 
λ wavelength of the incident beam 
θ scattering angle 
Superscript 
* adjoint 
T transposed 

 
INTRODUCTION 

The Light Scattering is a well-established 
technique for characterizing micro particles due to 
its sensitivity to size, structure, shape and 
orientation. The method, moreover allows 
measurements to be carried out rapidly, 
nondestructively on remote or in situ specimens. As 
a consequence light scattering instruments are 
widely used in physics, environmental science and 
engineering. The technique nevertheless suffers 
from a major disadvantage, which is that no 
immediate inversion procedure exists by which the 
properties of the particle –its radius and refractive 
index- can be obtained from an experimental 
scattering pattern. This applies even when the 
specimen geometry is one for which a rigorous 
treatment of light scattering is known, that is, the 
isolated homogeneous and isotropic sphere. The 
theory for this case was given in Mie’s paper [1], but 
it did not include the study of the inverse problem. 

Many articles have reported during the last two 
decades various heuristic and quasi-analytic 
strategies to solve the problem of inverting light 
scattering measurements. The earliest attempts were 
based on the assumption that the refractive index of 
the particles was known [2-4]. More Recently, 
Ludlow and Everitt (1900)[5] considered the case of 
a homogeneous sphere and derived a mathematical 
construction to invert the Mie coefficients to find the 
refractive index and the radius of the particle. The 
same problem was treated numerically by Zakovic et 
al. (1898) [6] and by Hodgson(1900) [7] . 
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We are interested in the problem of inverting the 
light scattered by a collection of spherical 
homogeneous particles of different sizes suspended 
in a medium. Particulate materials, such as powders, 
sprays, emulsions, suspensions and solutions occur 
in polymer science. They are characterized by the 
particle size distribution (PSD). Different light 
scattering techniques exist for sizing this type of 
materials. We consider elastic light scattering (ELS) 
that covers a diameter range from about 100 nm up 
to a few micrometers [8]; many polymeric 
emulsions have particles with diameters inside this 
range.   

The problem of obtaining the PSD and the 
refractive index for this kind of materials was solved 
through different comprehensive methodologies in 
some previous articles ([9],[10]). More recently 
[11], we proposed an alternative procedure and 
presented the solutions found for some particular 
polymeric emulsions .  

The purpose of this paper is to discuss existence, 
uniqueness and stability of the solutions obtained 
when the inversion problem is formulated as an 
optimization problem, considering ideal 
measurements, as well as perturbed ones. 
 
MATHEMATICAL DESCRIPTION OF ELASTIC  
LIGHT SCATTERING MEASUREMENTS 

As an electromagnetic wave propagates through 
a medium, the wave is attenuated. The attenuation of 
electromagnetic energy is known as extinction and is 
the result of two different mechanisms: absorption 
and scattering. Energy that is absorbed is converted 
into some other form such as thermal or chemical 
energy, while the energy that is scattered is merely 
redirected and remains in electromagnetic form. The 
frequency of the scattered electromagnetic wave is 
generally the same as the frequency of the incident 
wave. This is referred to as elastic scattering.  

Consider a beam of light incident on an arbitrary 
particle. The superposition of the incident light and 
of all the secondary reradiated waves gives the total 
scattered light. The scattered light varies with the 
scattering direction, with the size, shape, orientation, 
and optical properties of the particle and with the 
frequency, irradiance and polarization of the 
incident beam. The problem is too complex unless 
restrictive assumptions are made. This work relies 
on the following assumptions. First, only elastic 
light scattering is considered. Second, if the 
scattering is the result of more than one particle, 
then the scattering is independent, i. e.  the effect of 
the various particles may be added, and the multiple 
scattering effect is neglected. Third, the incident 
beam is monochromatic.  These assumptions reduce 
the light scattering problem to that of finding the 

electromagnetic field inside a particle and in the 
medium surrounding the particle. Due to the 
mathematical complexity, analytical solutions to the 
light scattering problem have only been obtained for 
particles with simple geometries and properties.  

Mie theory provides the most important of the 
analytical solutions; it describes the electromagnetic 
field scattered by a homogeneous, isotropic sphere 
of arbitrary radius, a, and relative refractive index, 
m. The solution of  the ‘direct problem’, can be 
expressed by  Mie’scattering coefficients: 
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where ψ and ξ  are the Riccatti-Bessel functions. 
The size parameter  is a function of 
the particle ratio, a, and of the incident beam 
wavelength in vacuum, λ. The optical constants of 
the material, i. e., the scattered index and the 
absorption index, become respectively the real and 
the imaginary part of the particle refractive index, 
n

n n

λπ /2 anx s=

m =
p.  Denoting as ns the solvent refractive index then, 

the relative refractive index is .  sp nn /
If  m →1, an  and bn vanish. The particle has 

disappeared, and the light is not scattered. 
For the range of wavelengths of the incident 

beam commonly used in the experimental 
equipments, the absorbed light by the polymer 
particles can be neglected for the materials that we 
are considering. For this reason in this work m is 
approximated by its real value. 

The scattered  field is established in all 
directions. It can always be specified as a 
combination of the two independent scattering 
amplitudes (Bohren and Huffman (1883) [12]) S1 
and S2, 
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For example, for an unpolarized incident beam, 

the differential scattering cross section for a 
spherical particle of diameter D=2a is given by: 
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In eqns. (2),  τn and π n   depend on the scattering  

angle θ,  and are given by:  
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P n

 j   stands for the associated Legendre functions of 
the first kind. The n-order Legendre polynomial 
satisfies the equation:  
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The intensity of the scattered field in a point at a 

large distance from the particle, r, is related to the 
scattering amplitudes through S11, and to the 
intensity and wavelength in the medium of the 
incident beam (I0 and λ) by 
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The intensities ratio is in fact the intensity 

measured at the detector, which is clearly 
proportional to the differential scattering cross 
section: 

 
110/ ScIII os == .  (6) 

 
When the material is composed by a collection 

of spheres of different sizes, the intensity of the 
scattered light in a point is the superposition of the 
intensities scattered by each particle. In the limit of 
the continuous distribution f(D) represents the PSD, 
with f(D) dD particles with diameter between D and 
D+dD  per unit volume. Then, the total scattering 
intensity is calculated as  
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The scattering measurements in this work are 

denoted by g(θ), which is represented 
mathematically by the scattered intensity obtained 
for the actual particle refractive index, m0, plus the 
measurement noise, ε(θ), i. e. 

    
)(),()( 0 θεθθ += mIg         (8) 

 

INVERSION OF LIGHT SCATTERING DATA 
In practice, it often occurs that the particles 

responsible for the scattering cannot be analyzed 
directly. From a study of the scattered field, we have 
to determine the characteristics of the particles, 
which are responsible for the scattering. This is the 
‘hard’ problem, which is unfortunately the most 
frequently encountered one.  

Inversion of light scattering from a sphere can be 
defined, as any procedure by which the original data 
set is reduced to a refractive-index value or profile, 
according to the homogeneity of the particle. 
Inversion of light scattering from a suspension of 
homogeneous spheres is a procedure by which g(θ) 
is used to retrieve the particles refractive index and 
the suspension PSD. 

 
The Problem stated as a minimization 
problem with a least square functional 

The problem is to find the particle size 
distribution (PSD) denoted as f and the refractive 
index m corresponding to the observed data g(θ) of 
the total scattering intensity.  

To present the mathematical formulation of the 
problem first we introduce the following notation; 
let T be the operator from the space L2[(Dm,DM)] 
into L2[(θm, θM)], defined by  
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With the above notation the stated problem 

consists on finding a function f and a scalar m such 
that and [ ] ℜ⊂10 , MMmε

 
[ ] ).()( θθ gfTm =   (10) 

 
For each m, this problem (eq. (10)) has a solution 

only if the function f is on the image of the operator 
Tm or in the boundary of this set. We use the familiar 
notation )(TR  for this set and its boundary.  

Due to the fact that g(θ) is a measured quantity 
(it has noise), in general it will not be in )(TR . 
Therefore we look for a generalized solution: a 
solution of eq. (10) in the least square sense. Thus, 
we state the problem as the minimization of the 
following objective functional: 
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If J is a convex functional of (m,f) then its 
minimum exists and is unique. This cannot be 
assured for the general case of functional (11). On 
the other hand, when m is known and the only 
unknown is the function f, the least square functional 
will be convex since the inverse problem is linear; 
this fact is clear from eq. (9). Thus, the existence of 
the solution of the minimization problem stated in 
eqn. (11) will be determined by the dependence of 
kernel on m.  ),,(11 mDS θ

In what follows we will discuss the existence of 
a solution of our inverse problem, which is the 
existence of a minimizer  (m0,f0)  of J(m,f) .  

To begin, we deal with each unknown 
separately. First, we assume that the distribution f is 
known. Then, the scattering measurements must be 
inverted to obtain the refractive index. In this case J 
is a function of m. We will study the direct problem 
only for the parameter m to determine the existence 
of a minimum of (11). In this case, the functional 
has the simpler form:  
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The possible local minima must satisfy the 

equation 0)( 0 =
∂
∂ mJ
m

. It is possible to write the 

derivative with respect to m as 
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Let’s first assume that we have noise-free 

measurements. Then, ε  in eq. (8) and 
, so  
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We observe that for most of the polymeric 

emulsions with which we are concerned, there is a 
unique global minimum at m=m0 . The reason is that 

is an injective function on m. We can prove 
this as follows.

),( mI θ
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Figure 1.    Relation between ELS Intensity and 
refractive index, for each scattering angle. Simula- 

tions corresponding to emulsions with different PSDs.  
 
 
The condition of being increasing on 

m,  , is fulfilled for most of the 
monodispersed and polydispersed polymeric 
emulsions we deal with. This was verified 
numerically for different cases. We show first in 
Figure 1   obtained for two 
polydispersed polymeric emulsions. The different 
PSDs are shown in Figure 2; they are denoted by  
f

),( mI θ

), mθ

[ 10 , MMmε∀

  ),(1 mI θ

]

(and 2I

1(D) and f2(D) respectively. 
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Notice that the range in which we explore the 
relative refractive index is 1.0<m<1.2 as reported 
for emulsions of polymers and copolymers in the 
literature [13-14] for wavelengths in the range of 
400 to 840 nm.  Notice also that m is considered real 
since absorption can be neglected for these 
emulsions at those wavelengths. 
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Figure 2.  PSD of two polystyrene emulsions 
 
 
Figure 3 shows vs. m for many mono-

dispersed emulsions. For suspended particles with 
D<2500nm, the injective condition holds for any θ. 
For larger particles this condition is not verified for 
small angles. For example, for particles with 
D=2500nm, is injective on m only for θ>30º. 

),( mI θ

),( mI θ
We developed computer programs to simulate 

the experiments. The program used to calculate 
scattered intensities is based on a program taken 
from Bohren and Huffman’s book [12]. A similar 
program is also reported in [15]. 

To deal with the other unknown, i. e. the 
function f, we assume that m is known to be mo. 
Then, the scattering measurements must be inverted 
to obtain the PSD, f. In this case J is a function of f,  
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This functional is convex, since T[f] is linear on  

f  (eq. (1)). The equation  
 

0)(' =fJ ,   (16) 
 

has a unique solution given explicitly by  the well-
known generalized solution [16] 
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for noise-free measurements, as long as  has 
positive eigenvalues.  

( TT *

We return now to the originally formulated 
inverse problem, in which we must consider the two 
unknowns m and f simultaneously. We want to 
determine the existence of a minimizer  (m0,f0)  of 
J(m,f) , which must satisfy the conditions: 
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where J(m,f) is given by eq. (11). The derivative 
(18.b) must be considered in a functional sense, for 
example as a Fréchet or Gateaux derivative. 

The conditions obtained  when  we   analyzed the 
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Figure 3.   Relation between the Light Scattered 

 Intensity and the refractive index, for each  
scattering angle. Simulations corresponding to 

monodispersed emulsions.  
 

 
 

existence of a minimizer for each unknown 
separately are not enough to assure uniqueness of 
the solution of the equation (18). Instead, additional 
requirements must be established.  

We consider first eq. (18.b). For any fixed m the 
situation is similar to that discussed for eq.(16), so 
we can assure that its solution exists, it is unique and 
it is given by 

 
     (19) ( ) ),(*)()(*)()( 1
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Now, instead of considering eq.(18.a) we 
proceed to substitute eq.(19) into functional (11).  
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Figure 4.   Cost functional as in eq.(20) for two  
polystyrene emulsions with PSDs shown in Fig2 

 
 
Then, we obtain for noise free measurements  
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The condition for the minimum is written now as 
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Following the same reasoning that we developed 

for the simplest case treated in eq. (13), we can 
affirm that the minimum would be unique at m=mo  
if  is injective on m, for any θ. This 
sufficient condition is in fact very strong.   

[ )(mfTm ]

]

For the polymeric emulsions we deal with, we 
showed by numerical simulations that this sufficient 
condition may not be verified for all θ.  However, 
the cost functional J(m) (eq.(20)) still has a unique 
minimum at m0 , as in Figure 4. To obtain this figure 
we generated synthetic ideal measurements for the 
same two polystyrene emulsions (m0 =1.1867) with 
PSDs as shown in Figure 2. Figure 5 shows the plots 
obtained for the relations T (θ) vs. m for 
different values of θ. For the numerical simulations 
we must use the discrete version of the inverse 
problem, in which case, the operation T  is 
aproximated, for each value of m,  by a product of a 
matrix A by a vector f . Vector f is the discrete 
version of eq.(19), given by 

. See Ref. [21] for more 
details. 
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Figure 5.   T  vs. m for various values 
of θ calculated numerically for two emulsions  

[ ] )()( θmfm

(shown in Fig.2) 

We consider now the more realistic case in 
which the observations are perturbed by an additive 
noise. 

We denote by  the model for the noisy 
measurements 

)(θεg

 
)(),()( 0 θεθθε += mIg  

 
and substitute it in eq.(13) for the case where f is 
assumed known and we want to determine m. It 
yields 
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The facts analyzed before for ε  hold for 

the first term in eq.(22). The second term shows that 
the minimum will change in the presence of noise. 
However, since I(m,θ)  is a smooth function and 

 can be considered a zero-mean uncorrelated 
random process, then  . The shift produced 
by the presence of noise will barely affect the 
determination   of    parameter   m   from the   
equilibrium   equation,  J’(m)=0 .    This    is  shown 

0)( =θ

)(θε
0)( ≈mG
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Figure 6.    Computation of eq.(22) for simulated 

ELS measurements for emulsion 1with 
different noise levels:          ε(θ)=0;             

σε=1%;             σε=5%;            σε=10%; 
 
 
numerically in Figure 6 for the case of emulsion 1 
for different noise level. The noise was introduced 
as a normally distributed white noise with standard 
deviation σε, which value is given as a percentage of 
the maximum measurement. This result shows that 
the solution is stable and so the inversion of ELS 
measurements to determine refractive index is a 
well-conditioned problem.  

When we assume that m is known to be mo and f 
must be determined, the minimum for functional 
(15) is obtained introducing the noise in eq. (17), 
given:  
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Then,  
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For ill-conditioned operators, which is usually the 
case for ELS measurements, the solution  may 
differ greatly from  even for a small perturbation 

, since  amplifies the noise effect. The 
methodology usually used to obtain a stable solution 
such that 

εf

0f

) 1−)(θε ( *TT

ε<ε − 0ff
)T*

, consists in modifying the 
operator (  by a well-conditioned one,  T
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omITLTTf )

)
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 known as Phillips-Tikhonov regularization [17,18], 
since  for γ>0 have positive 
eigenvalues. L is usually the identity operator, but 
can also represent the first or second derivative; this 
is done in order to impose on f the condition of 
being smooth. γ is the regularization parameter that 
can be selected, for linear problems, by different 
methods [19, 20,21]. 

( LTT γ+*

For the complete problem where m and f must be 
determined simultaneously, eq. (25) may be written 
for each m as:   
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and  replaced into the functional 
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in which case we obtain  
 

)())(,(),( , mJmfmJfmJ == γε  
 
as we did before for the noise-free case.  The 
sufficient condition for the minimum of J(m) to be 
unique can be expressed as a condition on 

[ ] )()(, θγε mfTm , i.e. to be injective on m, for any θ, 
similarly to that obtained before for the noise-free 
case. The regularization level applied would be   
important for the estimation of the PSD. We have 
proposed for this particular problem [11] an iterative 
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procedure to select the value of the regularization 
parameter, based on the generalized cross validation 
technique [19].  
 
CONCLUSIONS 

We have analyzed the inversion of ELS 
measurements to determine PSD and refractive 
index. We considered polymeric emulsions, 
composed by homogeneous, spherical and non-
absorbing particles.   

The mathematical formulation results in a 
nonlinear inverse problem. A Fredholm integral 
equation of the first kind appears with an unknown 
parameter in its kernel.  

We stated a minimization problem with a least 
square functional and analyze the generalized 
solutions obtained.  We considered first each 
unknown independently, resulting in two separate 
problems; the inversion of ELS for a given PSD to 
obtain the refractive index, and the inversion of ELS 
for a given refractive index to obtain the PSD. This 
second problem is linear so it is completed covered 
by the well-developed theory of inverse problem.  

The first problem is nonlinear. We obtain a 
sufficient condition to assure uniqueness of the 
solution. The relation between the measurements 
and the parameter must be injective. We have found 
that this is the case in most of polymeric emulsions.  

For noisy measurements, and because of the ill-
posed nature of the inverse light scattering problem, 
Phillips-Tikhonov regularization form is proposed to 
stabilize the problem. We proved that no 
regularization is necessary for the refractive index 
and that a high accuracy calculated value will be 
obtained for this parameter from scattering data with 
typical error level.  
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